China supplier Sharp Top Chain with Long Life (Applied in wood conveyor)

Product Description

Sharp Top Chain with Long Life (Applied in wood conveyor)
 

Product Description


1. Chain types: Roller chain, conveyor chain, transmission chain, motorcycle roller chain, silent chain, oil pump chain, weld steel drag chain, plastic chain, etc;

2. Main materials: It is 40Mn. 40Cr, 45Mn alloy steel, SUS304, and POM plastic for plates, 10#, 20#, 20CrMnMo, 30CrMnTi for pins and rollers;

3. Heat treatment: Carburizing, Austemper Stressing, Nitro-caburizing harden, etc;

4. Surface: Shot peening, blackening, bluing or original;5. Package way: Plastic bag+ carton box+ plywood case
6. Application: Sharp top chains are mainly used in wood conveyor.
 

Product name   Sharp Top Chain with Long Life (Applied in wood conveyor)
Materials Available  1. Stainless Steel: SS304, SS316, etc
2. Alloy Steel: 45Mn, 42CrMo, 20CrMo, etc
3. OEM according to your request
Surface Treatment Shot peening, Blackening, Oxygenation, Polishing, Zinc-plated, Nickel-plated, Anodized, etc.
Characteristic Fire Resistant, Oil Resistant, Heat Resistant
Design criterion ISO DIN ANSI & Customer’s Drawing
Size Customer’s Drawing & ISO standard 
Application Wood conveyor, The finished product conveyor
Package Wooden Case / Container and pallet, or made-to-order
Certificate ISO9001: 2008 
Advantage First quality, Best service, Competitive price, Fast delivery
Delivery Time 20 days for samples. 45 days for official order.

 

Detailed Photos


View more products,please click here…

 

Company Profile

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Carbon Steel
Structure: Conveyor Chain
Surface Treatment: Oil Blooming
Chain Size: C16bf2, C16bf3
Feature: Heat Resistant
Sample: for Free
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

conveyor

How do you ensure proper tensioning and alignment of a conveyor chain?

Proper tensioning and alignment are essential for the efficient and reliable operation of a conveyor chain. Here are the steps to ensure correct tensioning and alignment:

1. Initial Installation:

– Ensure that the conveyor frame and supports are properly aligned and leveled before installing the chain. Any misalignment or unevenness can lead to tensioning and alignment issues.

– Follow the manufacturer’s guidelines and specifications for chain installation. This includes proper placement of sprockets, tensioners, and guides.

2. Tensioning:

– Adjust the tension of the chain to the manufacturer’s recommended specifications. Proper tension prevents excessive sagging or tightness, reducing wear and extending the chain’s life.

– Use tensioning devices, such as adjustable take-up units or tensioning screws, to achieve the desired tension. Refer to the manufacturer’s guidelines for the appropriate method of tensioning for your specific conveyor chain.

– Regularly check and adjust the tension as needed. Factors such as chain wear, load variations, and temperature changes can affect the chain’s tension over time.

3. Alignment:

– Check the alignment of the chain with respect to the sprockets and guides. Misalignment can cause uneven wear, increased friction, and premature failure of the chain.

– Inspect the alignment by visually examining the chain’s path along the sprockets and guides. It should run smoothly without any signs of rubbing or excessive deviation.

– Use alignment tools, such as laser alignment devices or straightedges, to accurately assess and correct any misalignment. Adjust the position of sprockets, guides, and supports as necessary.

4. Regular Maintenance:

– Implement a scheduled maintenance program to regularly inspect and maintain proper tensioning and alignment of the conveyor chain.

– Monitor the chain’s performance, including wear patterns, noise levels, and power consumption, as indicators of potential tensioning or alignment issues.

– Keep the chain clean and free from debris or contaminants that can affect its movement and alignment.

By following these steps and regularly monitoring the tensioning and alignment of the conveyor chain, you can ensure smooth and reliable operation, minimize chain wear, and reduce the risk of unexpected failures.

conveyor

How do you calculate the power requirements for a conveyor chain?

Calculating the power requirements for a conveyor chain involves considering various factors. Here’s a step-by-step process:

1. Determine the total weight to be transported: Measure or estimate the total weight of the material or product that will be carried by the conveyor chain. This includes the weight of the product itself, any packaging, and additional loads.

2. Determine the speed of the conveyor: Determine the desired speed at which the conveyor chain will operate. This is typically measured in feet per minute (FPM) or meters per second (m/s).

3. Calculate the required capacity: Multiply the total weight by the desired speed to determine the required capacity of the conveyor system. This will give you the weight per unit of time (e.g., pounds per minute or kilograms per hour).

4. Consider the conveyor’s design factors: Take into account various design factors such as the type and pitch of the conveyor chain, the coefficient of friction between the chain and the conveyor components, and any incline or decline angles of the conveyor system. These factors affect the power requirements.

5. Determine the required power: Use the following formula to calculate the power requirements:

Power (in horsepower) = (Capacity × Friction Factor) ÷ (33,000 × Efficiency)

Where:

– Capacity is the weight per unit of time (from step 3)

– Friction Factor is the ratio of chain tension to chain weight, taking into account the design factors

– 33,000 is a conversion factor to convert the units to horsepower

– Efficiency is the overall efficiency of the conveyor system, typically expressed as a decimal value (e.g., 0.95 for 95% efficiency)

6. Select a suitable motor: Based on the calculated power requirements, select a motor that can provide the necessary power to drive the conveyor chain. Consider factors such as motor type, motor efficiency, and overload capacity.

It’s important to note that the power requirements may vary depending on specific conveyor system designs and operating conditions. Consulting with a qualified engineer or conveyor manufacturer is recommended to ensure accurate calculations and proper motor selection.

conveyor

How do you optimize the efficiency of a conveyor chain system?

To optimize the efficiency of a conveyor chain system, several factors should be considered and implemented:

1. System Design: Ensure that the conveyor system is properly designed to minimize energy losses, reduce friction, and optimize material flow. Consider factors such as conveyor length, incline/decline angles, and the number and placement of drive units to achieve efficient operation.

2. Chain Selection: Select the appropriate conveyor chain based on the specific application requirements, such as load capacity, speed, and environmental conditions. Consider factors like chain material, pitch, and strength to ensure optimal performance and longevity.

3. Lubrication: Proper lubrication of the conveyor chain is essential for reducing friction, wear, and power consumption. Choose the right lubricant for the application and regularly maintain the lubrication levels to ensure smooth chain operation.

4. Tensioning and Alignment: Regularly inspect and adjust the tension and alignment of the conveyor chain to prevent excessive slack or tightness. Proper tensioning and alignment help to minimize chain wear, reduce energy losses, and ensure consistent performance.

5. Preventive Maintenance: Implement a regular maintenance program to identify and address potential issues before they escalate. This includes cleaning the chain, inspecting sprockets and guides, replacing worn components, and checking for proper tension and alignment. A well-maintained system reduces downtime and extends the life of the chain.

6. System Monitoring: Utilize monitoring tools such as sensors, cameras, or automated systems to track the performance of the conveyor chain system. Monitoring can provide valuable data on chain tension, alignment, speed, and power consumption, allowing for timely adjustments and optimization.

7. Training and Operator Awareness: Train operators on best practices for operating and maintaining the conveyor chain system. Promote awareness of energy efficiency, proper handling, and safety protocols to ensure optimal system performance.

By considering these factors and implementing appropriate measures, the efficiency of a conveyor chain system can be optimized, leading to improved productivity, reduced energy consumption, and longer chain life.

China supplier Sharp Top Chain with Long Life (Applied in wood conveyor)  China supplier Sharp Top Chain with Long Life (Applied in wood conveyor)
editor by CX 2023-12-29