China OEM KT-MD300C Palm Plantation 4 Wheel Wheelbarrow Mini Dumper Chain Drive 4X4

Product Description

KT-MD300C Palm Plantation Four Wheel Mini Dumper Chain Dirve 4×4

        
 

 

Specifications:

Name & Model Mini Dumper KT-MD300C
Engine type 4-stroke, single cylinder, 
Brand & Model B&S 750 HONDA GXV160 LONCIN 196cc
Transmission Transaxle 4 CHINAMFG / 1 reverse speed
Fuel Unleaded petrol
Capacity 8cu.ft. or 300kgs/ 650lbs weight
Noise Rating 79db
Brake Disk
Cables Protected
Wheels Front 400 x 10, 4 ply, rear 400 x 8
Dimensions Length- 173cm/68″,  Width- 75cm/29″, Height- 87cm/34″ 
Weight 130kg
Package Angle iron welded frame, Packing size 1380*750*730mm
Loading Quantity 20FCL- 36pcs;  40FCL/40HQ- 75pcs

Features of Mini Dumper KT-MD300C:

  • This Power Wheel barrow has 300kg / 660lbs carrying capacity.
  • The Muck truck is powered by a HONDA GXV160/ B&S 750/ CHINAMFG 196cc engine with a 12 month commercial warranty.
  • The Mini dumper is easily maintained, is simple and safe to use.
  • The powered barrow has 4-forward gears and 1-Reverse.
  • The transmission is sealed for life and requires no service. 
  • The dumpers can be completely Powder coated  and have Hot dip Galvanizing bucket for optional. 
  • All the metal work is laser cut for a perfect finish.
  • The motorized wheel barrow will climb 30 degrees fully loaded. 
  • Measurement in width, fit through all standard doorways.


  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Loader
Handle Material: Rubber
Transport Package: Neutral Packing
Specification: 6 CBF
Trademark: KONSTANT
Origin: China
Customization:
Available

|

Customized Request

drive chain

How does the design of a drive chain affect its efficiency and performance?

The design of a drive chain plays a crucial role in determining its efficiency and performance characteristics. Here is a detailed explanation:

The efficiency and performance of a drive chain are influenced by several design factors that are carefully considered during its development:

  • Chain Pitch and Size: The pitch and size of the chain links affect the load-carrying capacity, efficiency, and overall performance of the drive chain. A proper balance must be struck between chain size and strength to ensure optimal power transmission while minimizing friction and energy losses.
  • Roller Design: The shape and dimensions of the chain’s rollers impact its efficiency and performance. Well-designed rollers reduce friction and wear by promoting smooth rolling motion between the chain and the sprocket teeth. They also contribute to improved power transmission and reduced noise levels.
  • Plate and Pin Design: The shape and material of the chain’s plates and pins influence its strength, durability, and flexibility. Properly designed plates and pins ensure reliable power transmission, resistance to wear, and the ability to accommodate shock loads and varying torque conditions.
  • Sprocket Profile and Tooth Design: The design of the chain’s sprockets is critical for efficient power transmission. Sprockets with accurately machined teeth and suitable profiles minimize friction, ensure proper engagement with the chain, and facilitate smooth chain articulation. Well-designed sprockets reduce wear, noise, and energy losses.
  • Lubrication Features: Drive chain design often incorporates lubrication features such as oiling holes or grooves to facilitate proper lubricant distribution along the chain’s moving parts. Well-designed lubrication features ensure effective lubrication, reduce friction, prevent wear, and enhance the chain’s overall efficiency and lifespan.
  • Material Selection: The choice of materials for the chain’s components, such as the rollers, plates, pins, and bushings, significantly impacts its efficiency and performance. The selected materials must possess appropriate strength, wear resistance, and fatigue resistance to withstand the operating conditions and demands of the application.
  • Tensioning and Adjustment Mechanisms: Drive chain design often includes mechanisms for tensioning and adjusting the chain’s tension. Properly designed tensioning systems ensure optimal chain tension throughout its operation, promoting efficient power transmission, reducing chain vibration, and extending the chain’s service life.

A well-designed drive chain minimizes energy losses due to friction, reduces wear, and optimizes power transmission efficiency. It provides smooth and reliable operation, reduces noise levels, and contributes to the overall performance and longevity of the power transmission system.

It is important to note that drive chain design should consider the specific requirements and constraints of the application, including load capacity, speed, environmental conditions, and maintenance considerations. Regular inspection, lubrication, and proper tensioning are essential for maintaining the efficiency and performance of the drive chain over time.

By incorporating efficient design principles and considering the various factors that influence performance, manufacturers can produce drive chains that offer high efficiency, reliable power transmission, extended service life, and optimal performance in their intended applications.

drive chain

What are the specific guidelines for installing a drive chain?

Proper installation of a drive chain is crucial to ensure its optimal performance and longevity. Here are the specific guidelines for installing a drive chain:

  1. Inspect the new drive chain before installation. Check for any signs of damage or defects. Ensure that the chain meets the specifications and requirements of the application.
  2. Ensure the sprockets are in good condition and properly aligned. Check for worn teeth, damage, or misalignment. Replace or repair any faulty sprockets before installing the new chain.
  3. Clean the sprockets and chain path thoroughly. Remove any dirt, debris, or old lubricant that may affect the performance of the new chain.
  4. Measure and cut the new chain to the appropriate length. Use a chain breaker or a suitable cutting tool to ensure a clean and precise cut.
  5. Install the master link or connecting link according to the manufacturer’s instructions. Make sure it is securely fastened and properly seated.
  6. Place the new chain onto the sprockets. Ensure that the chain engages smoothly and evenly on the teeth of the sprockets.
  7. Check the chain tension. Follow the manufacturer’s guidelines for the recommended tension. Adjust the tension if necessary by adjusting the position of the rear wheel or using a tensioner mechanism, if available.
  8. Lubricate the chain with a suitable lubricant. Apply the lubricant evenly along the entire length of the chain. Avoid over-lubrication, as it can attract dirt and debris.
  9. Rotate the wheel or crank the engine to ensure that the chain moves smoothly and freely without any binding or excessive noise.
  10. Perform a final inspection to verify that the chain is properly installed, aligned, and tensioned. Check for any abnormal sounds, vibrations, or signs of chain slippage.

Following these specific guidelines for installing a drive chain will help ensure proper functionality, longevity, and optimal performance of the chain in the intended application.

drive chain

How do you properly tension a drive chain?

Tensioning a drive chain properly is important to ensure optimal performance, minimize wear, and prevent premature failure. Here are the steps to properly tension a drive chain:

  1. Identify the Tensioning Method: Determine the type of tensioning system used for your specific drive chain. Common tensioning methods include manual adjustment, automatic tensioners, or tensioning devices incorporated into the chain drive system.
  2. Refer to Manufacturer’s Guidelines: Consult the manufacturer’s guidelines or specifications for the recommended tensioning range and procedure specific to your drive chain. Manufacturers often provide specific instructions regarding the appropriate tensioning method and the acceptable slack or sag limits.
  3. Measure the Initial Tension: Measure the initial tension of the drive chain. This can be done using a tension gauge or by applying manual force to the chain at a specific point and measuring the deflection or sag. Ensure that the initial tension is within the recommended range specified by the manufacturer.
  4. Adjust Tension: If the initial tension is outside the recommended range, adjust the tension accordingly. For manual tensioning systems, typically a tensioning device, such as an adjusting bolt or eccentric cam, is used to increase or decrease the tension. Follow the manufacturer’s instructions for the specific adjustment mechanism.
  5. Check Alignment: While tensioning the chain, ensure that it remains properly aligned on the sprockets. Misalignment can cause uneven wear and premature failure. Make any necessary alignment adjustments as per the manufacturer’s recommendations.
  6. Recheck Tension: After tension adjustment and alignment, recheck the tension to ensure it falls within the recommended range. Use a tension gauge or follow the manufacturer’s guidelines for measuring the tension. Repeat the adjustment process if necessary.
  7. Verify Operation: After tensioning, operate the machinery or system with the tensioned chain and observe its performance. Check for any abnormal noise, vibration, or unusual wear patterns. If any issues persist, reevaluate the tensioning and alignment.

It is important to note that proper tensioning may require periodic rechecks and adjustments over time as the chain elongates or wears. Regular maintenance and inspections will help ensure the drive chain remains properly tensioned and aligned for optimal performance and longevity.

China OEM KT-MD300C Palm Plantation 4 Wheel Wheelbarrow Mini Dumper Chain Drive 4X4  China OEM KT-MD300C Palm Plantation 4 Wheel Wheelbarrow Mini Dumper Chain Drive 4X4
editor by CX 2024-04-25